Exercise 13

(a) What quantities are given in the problem?
(b) What is the unknown?
(c) Draw a picture of the situation for any time t.
(d) Write an equation that relates the quantities.
(e) Finish solving the problem.

A plane flying horizontally at an altitude of 1 mi and a speed of $500 \mathrm{mi} / \mathrm{h}$ passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 2 mi away from the station.

Solution

The plane's speed $(d x / d t)$ and height above the ground (1 mi) are given. The rate that r, the distance from the station to the plane, is increasing is unknown.

Radar Station

The relationship between r and x is given by the Pythagorean theorem.

$$
r^{2}=x^{2}+1^{2} \rightarrow\left\{\begin{array}{l}
r=\sqrt{x^{2}+1} \\
x=\sqrt{r^{2}-1}
\end{array}\right.
$$

The rate that r is increasing is the derivative of r with respect to time t.

$$
\begin{aligned}
\frac{d r}{d t} & =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot \frac{d}{d t}\left(x^{2}+1\right) \\
& =\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2} \cdot\left(2 x \cdot \frac{d x}{d t}\right) \\
& =\frac{x}{\sqrt{x^{2}+1}} \frac{d x}{d t} \\
& =\frac{\sqrt{r^{2}-1}}{r} \frac{d x}{d t}
\end{aligned}
$$

Therefore, the rate that r is increasing when $r=2$ is

$$
\left.\frac{d r}{d t}\right|_{r=2}=\frac{\sqrt{2^{2}-1}}{2}\left(500 \frac{\mathrm{mi}}{\mathrm{~h}}\right)=250 \sqrt{3} \frac{\mathrm{mi}}{\mathrm{~h}} .
$$

